
1 
 

Wisdom or Madness: Expert Data on Wisdom of Crowds 

Roger M.Cooke Feb 13, 2025 
 

Abstract From structured expert judgment data with realizations it is concluded that (1) experts’ Mean Absolute Percentage Errors are 

very fat tailed, making convergence problematic, (2) probabilistic proximity of experts’ median forecasts to realizations are modestly 

dependent, whereas experts’ abilities to catch realizations in their 90% bands are much less so, (3) expert agreement does not predict 

expert panel performance, (4) regarding the performance metrics Statistical Accuracy and Mean Absolute Percentage Errors,  number 

of experts is helpful for the first, harmful for the second whereas dependence in placement of medians is harmful for the first, helpful 

for the second, and (5) following Jensen’s inequality, averaging experts’ median assessments is slightly better than choosing a random 

expert but (from a previous publication) much worse than the median of equally weighted or performance weightged combinations of 

experts’ distributions, underscoring the importance of method of aggregation. Probabilistic crowds are wiser than point forecast 

crowds. 
 

Introduction      

It seems  to have started in 1841 with Charles Mackay's Memoirs Of Extraordinary Popular Delusions and The Madness Of 

Crowds. Francis Galton parried in 1907 with Cornwall fair goers'  average (originally median) estimate of a dead bull's weight which 

was nearly spot on. James Surowieki's The Wisdom of Crowds (2004) distinguished wise crowds from irrational crowds on five 

criteria: diversity, independence, decentralization, aggregation and trust. Douglas Murray brought us back to The Madness of Crowds, 

gender, race and identity (2019).  Much is written on the credibility of crowds.  Lacking is any scientific use of expert probabilistic 

forecasting data for which realizations or true values are available. Emphasis is placed on "expert" and "probabilistic" for a number of 

reasons: (1)  the inevitable winnowing of reliable crowds often turns on predicates associated with expertise, (2) experts' scientific 

training distinguishes knowledge from uncertain  guesses, the provenance of forecasting, (3) probabilistic forecasting converts all 

quantities to a common scale, namely probability, because of which  (4) we can develop performance metrics applicable to any 

forecast situation, and finally (5) we have extensive data from 107 structured expert judgment (SEJ) panels. There is even discussion 

whether Galton’s “vox populi” shouldn’t be called “vox expertorum” given the large number of expert butchers and farmers attending 

these events. 

SEJ  panels consist, on average, of  11 vetted experts giving 5, 50 and 95 percentiles for uncertain variables from their fields and 

also for, on average, 14 calibration variables from their fields to which true values are or become known. Performance on these 

calibration variables is used to construct performance  weighted combinations and compared with equally weighed combinations. 

Expert performance is persistent, performance based combinations are superior to equal weight combinations both in– and out–of 

sample and have been evaluated in real applications.  

 

Crowd–casting versus SEJ forecasting 

When crowd–casting and expert forecasting mingle, Surowieki's criteria run up against expert communalities. Scientists in an 

SEJ forecasting panel have similar training, follow the same literature and often know each other.  Physicist Max Planck (1950) 

famously quipped "science advances one funeral at a time". Surowieki opines: “Homogeneous groups, particularly small ones, are 

often victims of what the psychologist Irving Janis called “groupthink.”(p.36) “After a survey of expert forecasts and analyses in a 

wide variety of fields, Wharton professor J. Scott Armstrong wrote,‘I could find no studies that showed an important advantage for 

expertise’.”(p.33). The antidote is crowd size:  “...much of what we’ve seen so far suggests that a large group of diverse individuals 

will come up with better and more robust forecasts and make more intelligent decisions than even the most skilled “decision 

maker.”(p.32). Au contraire, says Naomi Oreskes in Why Trust Science (2019): scientific consensus resulting from rigorous peer 

review provides a basis for trust.  

SEJ data is used to examine two pillars of WOC: (1) Is crowd size really beneficial? and (2) Is “diversity” / “independence” 

beneficial? To address these, 40 forecasting panels with at least 10 experts and at least 10 calibration variables  are selected giving 

586 forecast variables with realizations, 698 experts and 10,189 expert  forecasts (see appendix Table A1). “Beneficial” is measured 

by two performance metrics.  

 

Performance metrics 

The absolute percentage error for forecast f with realization r is |(f–r)/r| and is unstable for r close to zero.   Absolute percentage 

error is scale invariant, so scores for different forecasts and different realizations can be averaged, yielding the  Mean Absolute 

Percentage Error (MAPE).  We can average over all calibration variables for each expert to form an expert MAPE,  we can average the 

expert MAPEs for all experts in a panel to arrive at an expert panel MAPE which is the expected MAPE of a randomly chosen expert. 

Invoking the Wisdom Of Crowds (WOC) we can first average experts’ median forecasts and then compute the WOC MAPE, per 

variable and per panel.  By Jensen’s inequality WOC MAPE is always less or equal to expert panel MAPE, though the mean difference 

per panel is a mere 0.009 in this case (see appendix). 

Statistical Accuracy (SA) is based on the relative frequency with which the realizations of independent calibration variables fall 

inside the forecaster’s four inter–quantile intervals. SA is the probability that these relative frequencies should differ from the 

theoretical inter quantile probabilities  (5%, 45%, 45%, 5%) by at least the observed amount. Low values near zero mean that it is very 

unlikely that the forecaster’s probabilities are statistically accurate, high values, near 1, indicate good agreement between observed and 

expected relative frequencies. 

 

https://galton.org/cgi-bin/searchImages/galton/search/essays/pages/galton-1907-ballot-box_1.htm
https://www.amazon.com/Wisdom-Crowds-James-Surowiecki/dp/0385721706
https://www.amazon.com/s?k=The+Madness+of+Crowds%2C+gender%2C+race+and+identity&i=stripbooks&crid=MY0QAN00KUHA&sprefix=the+madness+of+crowds%2C+gender%2C+race+and+identity+%2Cstripbooks%2C192&ref=nb_sb_noss
https://www.amazon.com/s?k=The+Madness+of+Crowds%2C+gender%2C+race+and+identity&i=stripbooks&crid=MY0QAN00KUHA&sprefix=the+madness+of+crowds%2C+gender%2C+race+and+identity+%2Cstripbooks%2C192&ref=nb_sb_noss
http://www.cooke-aspinall.net/
https://galton.org/cgi-bin/searchImages/galton/search/essays/pages/galton-1907-ballot-box_1.htm
https://www.youtube.com/watch?v=V7XQngqF-aA
https://www.youtube.com/watch?v=b8uMlhGeq4w
https://www.sciencedirect.com/science/article/pii/S0169207020300959#!
https://www.sciencedirect.com/science/article/pii/S0169207020300959
https://www.sciencedirect.com/science/article/pii/S0951832017302090?via%3Dihub
https://www.nature.com/articles/463294a
https://press.princeton.edu/books/hardcover/9780691179001/why-trust-science
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Tail Size1 

Participants in WOC discussions need to appreciate how much the discussion has been constrained by statistical assumptions, 

and how fragile these assumptions really are. If we sample a set of numbers from some distribution, we can always compute the 

average of these numbers as well as the variance, standard deviation, correlations with other sets of numbers etc.   But if we sample 

more numbers or sample a like sized second batch, do these averages, variances and correlations tend to agree? The law of large 

numbers says that averages, variances, and correlations stabilize as we draw ever larger samples; however this law applies only if the 

distribution from which the numbers are drawn is ”thin tailed”.  If the distribution is “fat tailed” then none of this holds.   

 

Pictures give a better  idea than formal  mathematical definitions. The left panel of Figure 1 gives running averages (average the 

first two, then the first three, etc) of 1000 independent samples from a uniform distribution on the [0, 1] interval. The horizontal axis 

gives the size over which the average is taken.  On the vertical we plot the running average. At the horizontal value 1000 we average 

all 1000 samples.  In the right panel we do the same,  with the same numbers, except that these numbers are now inverted; 0.1 

becomes 10, etc. The inverse of the uniform distribution is a very fat tailed distribution. With thin tailed distributions running 

averages converge, with fat tailed distributions they do not.  Very large values keep popping up at a rate which prevents convergence. 

Fat tailed distributions are not exotic, but are not common knowledge. 

 

 
Figure 1: Thin tailed (left) and fat tailed (right) running averages. Horizonal axes denote the number of samples over which we 

average. 

 

If we draw repeated samples of size 1000, the thin tailed running averages will differ a bit at the beginning but quickly settle into 

the pattern. Figure 2 shows what happens with three samples of 1000 from the from the distributions in Figure 1. Notice the changing 

scale on the vertical axis for the fat tailed distributions; these samples do not settle into a pattern. The are dissipative. 

 

 
Figure 2: Three Repeated samples with running averages 

 

Statisticians don’t like fat tails, as they prevent application of the familiar statistical methods. It’s easy to delete  a single large 

value as an “outlier” so that the rest “look normal”. However, when one looks at larger samples from a fat tailed distribution, one 

realizes that the large values are characteristic of the whole distribution. If we order the sample from smallest to largest values, we 

see that the distance between adjacent samples just gets larger as the sample values get larger.  As we gather more samples, the 

average of the whole sample tends to resemble the largest sample in the set. In fact, this is a defining  feature of the “subexponential” 

class of fat tailed distributions. 

 

Once we look, we can see fat tailed distributions everywhere -  damages from natural disasters, crop insurance claims, citation 

scores, flood damages,  income distributions, hospital discharge rates etc. (Cooke et al 2014). What about experts? 

 

Crowd size 

 
1 This is a non-technical introduction to fat tailed distributions. Many text books give a full mathematical treatment, Cooke et al (2014) is directed to numerate 

non-specialists. 
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Do averages of ever more forecast errors trend down? There is an  antecedent question:  Do such averages converge at all? There are 

many examples of fat tailed distributions, including crop loss insurance claims, flood insurance claims,  hurricane damage, and damage 

from natural disasters, in which the running averages (average the first two, then the first three,  etc) wander off to infinity (Cooke et al 

2014). Figure 3 shows running averages of US damages in excess of 10$M  due to natural disasters (left) and absolute percentage error in 

10,198 expert forecasts (right). To be sure, these experts assess different quantities, but their absolute percentage errors can be plotted on 

an absolute scale reflecting the factor by which the forecast differs from the realization in absolute value. Such graphs depend on the 

ordering but random re–orderings will exhibit the same key feature: ever larger values keep popping up that prevent convergence. 

 

 
Figure 3: Running averages for US damages in excess of 10$M (right, Cooke et al 2014) and running averages for 10,189 expert 

absolute percentage errors. 

 

Experts’  absolute percentage errors in aggregate are very fat tailed and averages do not appear to converge.  Does this also 

apply to WOC forecasts? Figure 2 (left) shows 586 realizations in ascending order plotted with their  WOC forecasts. Note the very 

small realization with forecast differing by 8 orders of magnitude.   To avoid instabilities due to small realizations, we subset the 535 

forecasts for which the realizations are greater or equal to 0.1. The running averages are shown in Figure 4 (right); the averages of 

ever larger sets of absolute percenage forecast  errors just keeps growing.  

The panel sizes in our dataset do not support tail analysis per panel, but the effect of number of forecasters can be seen in other 

ways. Figure 5 plots all 586 WOC MAPEs against the panel size over which the median forecasts are averaged. The rank correlation 

in Figure 3 is weakly positive. WOC panel MAPES are not decreasing in panel size.  

 

Dependence / Diversity 

Increasing crowd size can have no effect if people all say the same thing. Diversity and dependence must be addressed. If we look 

only at expert forecasts in a panel, then of course they will be dependent for the simple reason that they are forecasting the same 

quantity. All forecasts of a volcanic eruption in m3 will be large, all forecasts of the weekly growth of the dome in m will be small. 

Apparently that’s not the right question. We should be asking about dependence in experts' forecast errors and error must be relative to 

the realization. Diversity usually refers to somethng like ‘different world views’. This is operationalized here as the amount of 

(dis)agreement in a panel.  

 

 
Figure 4: 586 WOC forecasts against realizations (left) and running averages of 535 WOC MAPEs (right) 

 

 
Figure 5: WOC MAPE against number of empaneled experts for 586 variables. 

 

To capture diversity and dependence, we construct four dependence matrices for each panel. The  density@realization matrix 

assigns each (expert, variable) the (interpolated) percentile of the expert's probability distribution realized by the true value. We can 

compute correlations variable–wise or expert–wise.  It emerges that the mean correlation expert–wise is 0.39 whereas for variables it is 

0.06 (see appendix Table A1). Because of this, 40% of the total variance is due to the variables, and 8% is due to the experts (positive 

correlation reduces explanatory power).  The HiLo diversity matrix assigns the value –1 to an (expert, variable) if the expert’s point 

https://www.wiley.com/en-be/Fat+Tailed+Distributions:+Data,+Diagnostics+and+Dependence,+Volume+1-p-9781848217928
https://www.wiley.com/en-be/Fat+Tailed+Distributions:+Data,+Diagnostics+and+Dependence,+Volume+1-p-9781848217928
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forecast (median) is above the realization, and assigns 1 otherwise. Total agreement (minimal diversity) entails that expert medians are 

either all above  or all below the realizations. The Tail diversity matrix assigns –1 if the realization falls outside the expert’s 90% 

confidence band, and 1 otherwise. Total agreement (minimal diversity) means that all experts’ confidence bands catch or all fail to 

catch the realizations. The net agreement (agreements – disagreements) for {–1,1} matrices can be computed from the covariance 

matrices (see appendix with illustrative calculation in Table A2). To compare across studies, the net agreement is divided by the 

numbers of experts and variables. The MAPE matrix assigns the absolute percentage error  to each (expert, variable).  

The following picture emerges: regarding the density@realization, the experts display a moderate, not extreme, tendency to 

cluster. The variance decompositions of HiLo and density@realization are quite similar. MAPE differs in that both experts and 

variables have less explanatory power. The Tail matrix reverses this relation between experts and variables (see appendix Fig A1). The 

experts cluster moderately regarding the  placement of medians but not regarding the uncertainty bands. Nevertheless, the assumption 

of no dependence is statistically rejected for most experts (see Table A3). Table 1 gives rank correlations between the two performance 

metrics with other study covariates. Statistical significance is based on the Student T approximation to the distribution of rank 

correlation (Kendall et al 1939). Significance level 0.05  is ‘significant’, those in (0.05, 0.2] are labelled  ‘indicative’, others are “too 

weak”.  Table 1 also indicates whether increasing values of the covariate is helpful(+), harmful(–) or too weak(?) for each performance 

metric. Negative correlations are helpful for MAPE, positive correlations are helpful for SA.  

The negative rank correlation between HiLoNetAgr and mean SA is significant: more DISagreement corresponds with higher SA 

in line with the diversity theme that agreement is harmful. However,  its negative correlation with  WOC panel MAPE argues that  more 

agreement is helpful. The number of experts in a panel positively correlates with WOC panel MAPE; more experts tends to raise the 

mean absolute percentage error (harmful).  However, the positive correlation with Mean SA means that adding experts to the panel 

tends to raise the mean SA of experts (helpful). Higher SA is helpful for WOC Panel MAPE. 

 

   
      

Table 1: 40 studies, rank correlations of covariates with performance metrics(left), diagram of significant or indicative rank correlations 

(right).’+’ means helpful, ‘–‘ means harmful. The rank correlation between nrex and HiLoNetAgr is -0.2 (not shown). 

 

There are no strong relationships in Table 1. However, if we focus on TailNetAgr then a sharp relationship emerges. TailNetAgr 

correlates strongly positive with SA in some studies and strongly negative in others. As shown in Figure 6, this is driven by the mean 

statistical accuracy of all experts in a panel. The rank correlation in Figure 6 is 0.68.  

 

 
 

 

Figure 6: Correlation of Tail Net Agreement and statistical accuracy against mean expert statistical accuracy. 

 

If we project all 40 points on the vertical axis of Figure 4, their average rank correlation with SA is –0.08. However, plotting these 

values against the Mean SA reveals the following: if the panel on the whole is statistically accurate, then high Tail agreement 

corresponds to high expert SA, otherwise high Tail agreement corresponds to low SA. In simplistic consensus terms, if the consensus is 

right then high Tail agreement predicts good SA, if the consensus is wrong then low Tail agreement predicts good SA. For other forms 

of agreement the signal is similar but weaker, also for absolute percentage error. On reflection this result is not surprising, but probably 

not the result those claiming scientific consensus confers credibility hoped to hear.  

 

Conclusions  
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Both expert MAPEs and WOC MAPEs appear to be very fat tailed, raising doubt about WOC MAPE convergence. WOC MAPE 

is modestly better than picking a random expert. Crowd size and diversity (HiLoNetAgr) work in opposite directions on the two 

performance metric and also opposiste to each other. Dependence is not simply good or bad,  its complicated. 

(Cooke et al 2021) compared aggregation schemes in 49 post 2006 studies including 22 smaller panels. For the these 49 panels, 

the WOC MAPE was 1,472.3. For the 40 panels studied here WOC MAPE was 23,220.86, underscoring the DIS advantage of larger 

panels. Instead of averaging the experts’ medians per panel, if we choose the expert with the best SA, the MAPE over the 40 panels 

would be 6.3 (appendix table +A4).   

Instead of averaging medians, (Cooke et al 2021) took the medians of combined expert distributions. Equally weighted 

combinations yielded a MAPE of 3.8 and performance weighted combinations yielded 2.2. Method of aggregation is perhaps the most 

important contributor to wisdom of crowds and adding uncertainty quantification to point forecasts enables better aggregation methods.  

Probabilistic crowds are wiser than point forecast crowds. 

 

Appendix 

 

 
Table A1  Studies & important covariates; Expert MAPE is the average of experts’ MAPEs, each expert’s MAPE is the average 

absolute percentage error over all variables. WOC MAPE is the average MAPE of the average of experts’ medians for each 

variable. WOC MAPE is less or equal to Expert MAPE by Jensen’s inequality. Net agreement is per expert variable. 

IndEx’dTailNetAgr is the expected net Tail agreement if the experts’ 1s and –1s were randomly distributed;  if the experts were 

all statistically accurate the probability of 1 would be 0.9 and the expected agreement would be 0.64. For HiLo the probability of 

1 would be 0.5 and the independent expected agreement would be 0. 

 

Application of Jensen’s inequality: | [(Ʃi=1..n fi/n) − r]/r |  = (1/|r|) |(1/n)[(Ʃi=1..n fi)  − nr]| =  

(1/|r|)  | (1/n) Ʃi=1..n  (fi  − r) |  ≤ (1/(|r|n) ) Ʃi=1..n |(fi − r)| = (1/n) Ʃi=1..n |(fi – r)/r|. 

 

Matrix M = M(ex  × vb) of {–1,1}; nx = number of experts, nv = number of variables.  Net Agreement for expert x1 = NA(1) =  

#Agreements−#Disagreements for x1.  x1 := x•1 = Ʃi–1…nv xi.  #agreements – #disagreements for x1 = NA(1) = i > 1 x1 • xi . C1 := i = 

1...nx  Cov(x1, xi). 

 

Lemma:   NA(1) = nv C1 + (x1/nv)(i 1  xi) – nv. 

 

Pf: C1 = Cov(x1, i = 1...nx   xi)  = Cov(x1, i>1   xi) + VAR(x1)  =  

= i>1 x1 • xi /nv – E(x1)E(i>1   xi)  + VAR(x1). 

E(x1
2) = 1;    
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i>1 x1 • xi  = nv C1  + nv E(x1)E(i > 1   xi) – nv [E(x1
2) – (E(x1))2]  =  

=  nv C1 + nv E(x1) Ʃi ≥ 1 E(xi) – nv = nv C1 + (x1) (i >1   xi) /nv – nv.  

 

Remark 1: The net agreement for expert 1 per variable is NA(1)/nv.  The total net agreement for matrix M per (expert,variable) is  

NA(Mnxnv) =  [Ʃi=1..nx NA(i)]/(nx×nv). 

 

Remark 2: Setting q=1 – p, the expected Net Agreement of independent { 1,−1} variables with P(1) = p is 

 p2+q2 −2pq = (p − q)2 = (2p – 1)2.   

With  (p + q)2 = 1, the  variance of Net Agreement is  

VAR =  1 –  (2p – 1)4 =  …. =   2pq(1 – 4pq). 

 

The Null Hypothesis is that for all cells in M the probability of 1 is constant  (0, 1) and independent for each cell.  Hence, M consists 

of nx×nv Bernoulli variables with probability p of ‘success’.  For expert 1, the agreement / disagreement with each other expert for 

each variable constitute (nx–1)×nv independent {–1, 1} variables, each with mean (2p–1)2 and variance 2pq(1–4pq). The sum of such 

variables is approximately normal with mean nv×(nx – 1)×(2p – 1)2  and standard deviation  [nv×(nx – 1)×2pq×(1 – 4pq)]1/2.   

  

Graphs for Variance Decomposition 

 

Let e denote experts and v denote variables. E(e|v) denotes conditional expectation of e given v and V(e|v) denotes conditional variance 

of e given v. The Law of Total Variance states that the overall variance V satisfies 

 

V = V(E(v|e)) + E(V(v|e)) = V(E(e|v)) + E(V(e|v)).   

 

V(E(v|e)/V is the fraction of V explained by variation over experts, V(E(e|v))/V is the fraction of V explained by variation over 

variables. The variance decomposition for the matrices dens@rls, HiLo and MAPE are similar and indicate moderate clustering of 

experts. For Tails the pattern is reversed,  more variance is explained by experts indicating clustering of variables. 

  

 

 
Fig A1 Fractional variance for variables (blue) and experts (red) 

 

For HiLo and Tail net agreement, we compare the experts’ net agreement per expert–variable with the expected net agreement if the 1’s 

and –1’s were distributed independently over the matrix with the observed frequency of occurrence.  For HiLo the net agreement is 

much lager than expected if the distribution of {1, – 1} were independent. For Tail the difference is smaller, though not uniformly. 

 

 
Fig A2 Net agreement per expert variable compared with net agreement of independent  {1, –1} to the matrix cells with equal 

probabilities of {1,–1}, for HiLo (left) and Tail (right). 

 

Table A2 shows the HiLo matrix for CO2em (Rennert et al 2022) (left) and the corresponding expert-wise covariance matrix (right). 

The calculation of Net Agreement for each expert is illustrated. 
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Table A2: HiLo and covariance matrices for CO2em. The net agreement per expert is computed as nrvb*sumCov +expsum 

HiLo*sumHiLoMatrix / nrvb  –  nrvb.  For expert 1 this is 11× 3.702479339+(–1)×(–14)/11 – 11=31. 

 

Table A3 shows the net agreement for each of the 10 experts in CO2em. For HiLo 2 experts’ net agreement falls within the 95% central 

range of the distribution under the null hypothesis, for Tail net agreement only 1.  

 

  
Table A3 Net agreement for each of the 10 experts in CO2m. 

 

 
Figure A3: WOC MAPE over 40 panels and MAPE of expert with best SA per panel. MAPE is on log scale. 
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